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Abstract. A nano-system in which electrons interact and in contact with Fermi leads gives rise to an
effective one-body scattering which depends on the presence of other scatterers in the attached leads.
This non local effect is a pure many-body effect that one neglects when one takes non interacting models
for describing quantum transport. This enhances the non-local character of the quantum conductance
by exchange interactions of a type similar to the RKKY-interaction between local magnetic moments.
A theoretical study of this effect is given assuming the Hartree-Fock approximation for spinless fermions
of Fermi momentum kr in an infinite chain embedding two scatterers separated by a segment of length
L.. The fermions interact only inside the two scatterers. The dependence of one scatterer onto the other
exhibits oscillations of period «/kr which decay as 1/L. and which are suppressed when L. exceeds the
thermal length Lr. The analytical results given by the Hartree-Fock approximation are compared with
exact numerical results obtained with the embedding method and the DMRG algorithm.

PACS. 71.27.4a Strongly correlated electron systems; heavy fermions — 72.10.-d Theory of electronic

transport; scattering mechanisms — 73.23.-b Electronic transport in mesoscopic systems

1 Introduction

The coupling of nano-objects via conduction electrons was
discovered long ago, in the case of spins of magnetic ions,
or of nuclei, which results indirectly from the interac-
tion of such spins with those of conduction electrons in
metals. After tracing out the degrees of freedom of the
conduction electrons, one gets an effective spin Hamilto-
nian characterized by an oscillatory long range interaction,
the RKKY-interaction [1-4], which plays a crucial role in
understanding the large variety of possible ordered spin
structures in magnetic crystals. If I, is a local magnetic
moment in a metal, the conduction electrons give rise to
an interaction energy between these moments, which can
be described by an Hamiltonian of the form:

Hekiy = Y Y JyLi - 1. (1)
i j<i

The coupling term between two moments separated by a
distance R;; behaves as

QkFRij COS(Qk'FR,'j) — Sin(Qk’FRij)

Jii o<
i R
ij

(2)

in d = 3 dimensions, kr being the Fermi momentum of
the conduction electrons. In d = 1 dimension, this gives a

long range 1/R interaction with oscillations of periodicity
7T/kF

We show in this work that a similar phenomenon
characterizes also the quantum conductance of nano-
systems in which electrons interact, coupled via metal-
lic wires. This phenomenon is very general and does not
require to include the spin degrees of freedom. Com-
bining Landauer’s formulation [5] of quantum trans-
port and the Hartree-Fock approximation, as reviewed in
reference [6,7], we will show that the scattering matrix of
an interacting system depends on what is embedded at a
distance R of the interacting system in the attached leads,
this dependence decaying as 1/R? with oscillations of pe-
riodicity 7/kp. This non local character of the quantum
conductance is another example of the effect of indirect ex-
change interactions between interacting nano-systems via
conduction electrons, as the RKKY-interaction between
local magnetic moments.

To study this phenomenon, we take an infinite chain
where spinless fermions do not interact outside two iden-
tical regions where the scattering is a pure many body
effect due to Coulomb repulsions. The chain is described
by a one dimensional tight binding model with nearest
neighbor hopping ¢, = 1. A nearest neighbor repulsion
of strength U acts only between two consecutive sites, in
two regions which are connected by L. sites where the
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particles do not interact. This model is simple enough
to be analytically solved at a mean field level, using the
Hartree-Fock (HF') approximation. To simplify the calcu-
lations, we add positive compensating potentials which ex-
actly cancels the Hartree terms of the HF equation. But
the exchange term modifies the hopping term coupling the
two internal sites of each scatterers, in such a way that it
takes a value v instead of ¢;. In the HF approximation,
v is given by a self-consistent equation. Having v, it is
straightforward to obtain the scattering matrix Si(v) of
one scatterer at the Fermi energy of the infinite non inter-
acting chain. Using the combination law of the one-body
S-matrices in series, one can get the scattering matrix
Sy(v), and hence the dimensionless conductance gi* (in
units of €2/h) of these two many-body scatterers in series,
in the HF approximation.

For such a system where two identical many-body scat-
terers are coupled by a perfect wire of L. sites where the
electrons do not interact, our main result is to show that
the value of v characterizing one scatterer differs from its
value when there is no second scatterer by an oscillatory
term of period 7/kp which decays as 1/L.. In certain lim-
its, v can be given in a simple form as a function of U, L.
and kp. For instance, for a half-filled chain (kp = 7/2)
and weak interactions, the effective hopping term v reads

v=1+

2 (—1)ke 1 ?

2—m+21/U i L. <2—7T+27T/U> i

(3)
In this limit, this expression shows how the effective hop-
ping term v characterizing a single scatterer decays as
1/L. towards its value when it is not in series with an-
other one, with the even-odd oscillations characteristic of
a half-filled chain. Using equation (3), it is straightforward
to show how the scattering matrix S;(v) of a single scat-
terer is modified by the presence of a second scatterer. We
underline that this non local effect is a pure many-body
effect that one neglects when one takes non interacting
models for describing quantum transport. This non local
effect was first numerically discovered in a previous work
[8], using the embedding method [9-16] and the DMRG
algorithm [17,18] valid for one dimensional fermions. In
this work, we give a simple theory of this effect based on
the HF approximation, which turns out to qualitatively
describe this non local effect for all values of U, includ-
ing its suppression in the limit when U — oo. The HF
approximation becomes quantitatively accurate for small
strengths U of the interaction. Moreover, we will also show
that this non local effect vanishes when the length L. of
the coupling wire exceeds the thermal length Lt charac-
terizing free fermions in one dimension.

The paper is organized as follows:

In Section 2, we consider a single scatterer with a near-
est neighbor repulsion of strength U embedded in an in-
finite chain. In the first sub-section, the HF equation of
this simple model is written, leading us to study a chain
where the hopping term between the two central sites is
equal to v instead of t;, = 1. This one body model is
solved in the second sub-section, allowing us to obtain the
implicit equation giving v in the HF approximation. The
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system being symmetric upon reflection, we use scattering
phase shifts and Friedel sum rule for this purpose. In the
third sub-section, the conductance of this single scatterer
is studied as a function of the strength U of the nearest
neighbor repulsion, the HF behavior being compared to
the exact results given by the embedding method and the
DMRG algorithm. In the fourth sub-section, the Friedel
oscillations of the particle density around the scatterer are
described. In a last sub-section, a correlation function in-
side the attached leads is calculated at a distance p from
the scatterer, which will be useful for describing the case
of two scatterers in series. This function is shown to decay
as 1/p with oscillations of periodicity 7/kp towards an
asymptotic value characterizing the chain without scat-
terer.

In Section 3, we study the conductance of two scatter-
ers in series, coupled by a scattering free wire of L. sites.
In the first sub-section, simple analytical expressions are
given in the limit where the strength U of the interaction
acting inside the two scatterers remains small. Notably,
we show that the effective hopping term v characterizing
each scatterer differs from the value obtained in Section 2
by a correction which decays as 1/L. with oscillations of
periodicity m/kp. In the second sub-section, the Hartree-
Fock equation is solved exactly for arbitrary values of U,
allowing us to show that the weak U-expansion assumed
in the first sub-section remains valid till U ~ ¢;,. The effec-
tive hopping term v characterizing a single scatterer being
modified when it is in series with another, the implication
of this non local effect upon the conductance is illustrated
in the third sub-section, the HF curves describing the con-
ductance oscillations of the two scatterers in series being
similar to the curves numerically obtained in reference [8].

In Section 4, the results for two scatterers in series
given by the HF theory are compared to the exact numer-
ical values given in reference [8]. The HF theory turns out
to give a good qualitative description of the non local ef-
fect, which becomes quantitatively accurate when U < ¢y,
for the very small scattering regions which we have con-
sidered.

In Section 5, we show that this non local effect is sup-
pressed at a temperature T, when the length L. of the
coupling wire exceeds the thermal length Lt o« vg/T of
free fermions in one dimension, vg being the Fermi veloc-
ity.

We conclude in Section 6 by a summary of the main
results, underlining their relevance for a theory of the non
local character of quantum transport measurements, and
suggesting straightforward extensions of this theory out-
side one dimension.

2 Transmission through a single many-body
scatterer

2.1 Microscopic model and exchange energy

To study the indirect exchange interaction via conduc-
tion electrons between nano-systems in which the elec-
trons interact, we begin to study the simplest many-body
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scatterer, taking a tight-binding model of spinless fermions
which do not interact, unless they occupy the two central
sites 0 and 1 of an infinite chain, which costs a nearest
neighbor repulsion energy U. Assuming the Hartree-Fock
approximation, this leads us to study an analytically solv-
able one body model where the hopping term between
the two central sites is modified by the interaction, mod-
ification which has to be calculated self-consistently. The
many-body scattering system is described by an Hamilto-
nian H = Hy;, + Hjine. The kinetic and interaction terms
respectively read

o0
Hyip = — Z th(c;:cp_l + c;_lcp)

p=—00

Hiny = Ulny — Vi]no — V4. (4)

The hopping amplitude ¢, = 1 between nearest neighbor
sites sets the energy scale, ¢, (c},) is the annihilation (cre-
ation) operator at site p, and n, = chp. The potential V.
is due to a positive background charge which exactly can-
cels the Hartree term of the HF equation. The conduction
band corresponds to energies —2 < E = —2cosk < 2
(k real). H is invariant under reflections (p — 1/2 —
—p+1/2) and exhibits particle-hole symmetry if the chain
is half filled. In this case, V. = 1/2, the Fermi momentum
kr = /2 and one has a uniform density without Friedel
oscillations around the central region where the fermions
interact.

In the HF approximation, one assumes a variational
ground state which is a Slater determinant of one-body
wave-functions ¢, (p) of energies E, < Ep. Since in our
model the negative charge inside the scatterer is exactly
compensated by a positive background charge, the Hartree
term is cancelled and we have just to take into account the
exchange term in the Hartree-Fock equation [19,20] giving

the Yo (p):
—Ya(p+1) —ta(p—1)— Ztg};{g'wa(p/) = Eava(p). (5)
p/

The exchange term

tzI},I;’ = Z Up,p’wg ()5 (p) (6)
Eg<Ep

with the taken nearest neighbor repulsion

Upp = U{0p,00p,1 + 0p,10p 0}, (7)

is very simple. It is zero, excepted between the two cen-
tral sites where the fermions interact, where it yields an
increase of the strength of the hopping term coupling the
two central sites by an amount

B0 =U Y 6r a0 = U (cleg). ()

Eo<Efr

The Hartree-Fock equation describes a tight-binding
model which is represented in Figure 1, where the hop-
ping term between the two central sites is no longer equal
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Fig. 1. Effective one body model obtained assuming the
Hartree-Fock approximation for a single many body scatterer
(Hamiltonian (4)). The hopping term (indicated above) v(U)
between the sites at p = 0 and p = 1 (indicated below) depends
on U and kp.

to t, = 1, but takes an interaction dependent value v,
which is given by an implicit equation:

v =ty + 15 () =1+15] (v) (9)

for t;, = 1.

2.2 Scattering phase shifts and density of states

The effective one-body model being symmetric upon the
reflection (p —1/2 — —p+ 1/2), its Hamiltonian has even
and odd standing-wave solutions ¢{(p) and ¥} (p), which
can be written [21] inside the conduction band as:

hp) = 2 cos (k(p-3) - 20)
)= 2sin (k(p-3) -am).

at the left side of the scatterer (p < 0) and

Wp) =2 cos (#(p-3) +ooii)
sto) = Zsn (k (v 1) + o),

at its right side (p > 1). The normalization factor \/2/L
corresponds to a chain of length L — oo. The scatter-
ing when v # 1 gives rise to two phase shifts dp(k) and
01(k). Writing the Schrédinger equation inside the scat-
terer (sites 0 and 1) for the even and odd solutions, one
gets:

—(2cosk)uy! (0) = — o (—1) — vy (1)
—(2eosk)y! (1) = — vg (0) - 4 (2),

which yields the following expressions for the even and
odd phase shifts:

(12)

v—1 k
tan o (k) = o cot <§> (13)
and
1—w k
tan o1 (k) = —— tan (5) (14)
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In addition, a value of v > 1 gives rise to two bound
states located in the central region with energies outside
the conduction band. The first one of energy

By = —(v+v) (15)
has an even wave-function given by
Yps1 (p) = < %) p =172l (16)
while the second of energy
Fpgo=v+v! (17)

has an odd wave-function given by

Us2(p) = <1 /”7;1) (—1)Po-lp=1/2l, (18)

When a scatterer is introduced in the chain (v # 1), this
yields a correction dp(E) to the density of states p(E),
which is given [22] for the even and odd components inside
the conduction band by:

1 0601 (F)

E) = = Zo\2) 1
po1(E) = ——35 (19)
0p(E) satisfies [22] Friedel sum rule:
Er
%0(Er) +0u(Er) _ / Sp(E)AE = vLs  (20)
T — 00

for a scatterer of length Lg embedded in a chain with a
uniform filling factor v. This implies that

JE5 6p(E)dE Ls
=2 50

JEE (B0 =1)dE L

(21)

when L — oo: the change dp(k) of the density of real mo-
menta k (inside the conduction band) vanishes in the limit
of infinite lead length. When L — oo, the only change in
the density p(k) due to the scatterer comes from the bound
states s of imaginary momenta K = ik which are oc-
cupied outside the conduction band at zero temperature.
For an arbitrary function F'(k) at zero temperature, this
gives the relation:

> F(k) = %/0 ’ F(k)dk + Y F(Kus), (22)

k<kp bs

the last term being a sum over the occupied bound states.

2.3 <c1'c0> and conductance g* (v)

To obtain the implicit equation giving v, we need to calcu-
late (clco), which is the sum of contributions A% due to
the conduction band and AIID’SO due to the occupied bound
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Fig. 2. Conductance g'fF of a single scatterer as a function of
the interaction strength U for kr = m/2. The solid line gives
the HF behavior (Eq. (25)). The circles are the exact results
obtained with embedding method and the DMRG algorithm.

states. Assuming that Er < 2, only the even bound state
is occupied and:

(clo) =AY + ALY
o L [Fr LI _
A = [t S ok e
i=0

/kF @ 4v cos ksin® k
“Jo ™ |1+ 0% —202cos(2k)
-2 2usin k

vsin p) N

v —1
v2 —1

=——"—arctan (
2
1—v2
2

(23)

sin kg

)
™

AL =0 (1)t (0) =

Using this, one can calculate v as a function of the in-
teraction strength U and of the Fermi momentum kp by
solving the implicit equation
v=1+U{cleo(v)). (24)
Once the change of the effective hopping term v between
the two central sites is obtained, it is straightforward to
determine the transmission coefficient ¢1(v). At zero tem-
perature, the Landauer conductance ¢f* (v) (in units of
e?/h) of the central region where the electrons interact is
given by this effective one-body transmission coefficient
|t¥ (v)|?. Using the Landauer formula, one gets the trans-
mission coefficient and the dimensionless conductance

th (U) :U(emkF - 1)
1 02 — o—2ikp

91" (v) =|ty" (v)* =

25
492 sin® kp (25)

vt — 202 cos(2kp) + 1

The behavior of ¢gi* as a function of the interaction
strength U, obtained assuming the Hartree-Fock approx-
imation (Eq. (25)) is shown in Figure 2 for kp = 7/2. An
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Fig. 3. Particle density n, = (c}c,) at sites p around a scat-
terer with an interaction strength U = 0.4. For kr = m/32
(lower part of the figure): contributions of the bound state
(dashed line) and of the conduction band (dotted-dashed line)
to np and Friedel oscillations of n, around the average fill-
ing 1/32 (solid line). For kr = 7/2 (upper part of the figure):
Contribution of the conduction band (dotted-dashed line) and
total uniform density n, = 1/2.

accurate value for g’fF can be obtained using the embed-
ding method and the DMRG algorithm, as introduced in
references [9,10]. Using this exact method, we have also
calculated g’fF at different interaction strengths U. The
data are presented in Figure 2, showing that the HF ap-
proximation is a good approximation for a very short in-
teracting region of moderate interaction strength U.

2.4 Friedel oscillations of the density outside half-filling

For a half-filled chain, the system has particle-hole sym-
metry, and the density n, = (c}c,) must be equal to 1/2 at
each site p. This is due to two opposite effects which com-
pensate each other: a decrease of the contribution of the
conduction band to the density that one can expect when
there is a local repulsion acting inside the scatterer, and
the contribution of the interaction-induced bound state to
the density. These contributions are plotted separately in
Figure 3. For half-filling (upper part of Fig. 3), one gets
an exact compensation of the two opposite effects for hav-
ing a uniform density, and particle-hole symmetry is sat-
isfied. Outside half-filling (lower part of Fig. 3), one gets
large Friedel oscillations of the density around the scat-
terer, as shown in Figure 3 for kr = 7/32 (filling factor
1/32). Since the Hartree term is exactly compensated in
our model, those oscillations are only due to the exchange
energy.

2.5 <cl+1cp> outside the scatterer

The conductance g’fF (v) was obtained assuming infinite
perfect leads outside the central scattering region. To
know to what extend this condition does really matter,

Indirect exchange interaction
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Fig. 4. Oscillatory decay of (c p_Hcp) towards its asymptotic
value 1/7 as a function of p for kp = 7/2, U = 0.1 (circles)
and U = 0.5 (diamonds) obtained by using (28)—(30).

we calculate (c;r) 4+1Cp) outside the two sites where the elec-
trons interact. When p > 1,
i — gL +1,
<cp+lcp> =A% P+ AT (26)

where the contributions Af:’g' LP of the conduction band

and APT'P of the bound state to (c;+1cp> read:

L (ke
Ag’;lv”:%/o dk{Zw (p+ 1)Yp(p )}

kg
:/0 i—k{coska(v,k)}

(27)
v? cos(2kp — k) — cos(2kp + k)
Gv, k)= (v -1
(v, k) = (v ) 1+ v* — 202 cos(2k)
=1 _,
APELP = =—g v =1
After integration, one obtains:
: 2
§ > _ sin kg ve—1 X(k 9
<cp+lcp - T2pt ) (kr,p,v) (28)
where the function X (kp,p,v) is defined as:
X(kFapa 'U) - ImF(kFapv 'U) (29)

1
7_+pa

F(kp,p,v) = oF1 (1 5

3 . .
5 +p,v2e2zkp) esz (2p + 1)7

oF1(a, 8,7, z) being the Gauss hypergeometric function

oo

Z Oé)n nzn

Fi(
21 ( Z )l

o, B,7,z (30)

with (z), = [[},_,(z + m). Using an expansion of the
Gauss hypergeometric function valid in the limit p — oc:

1

2 21kF
— %5
+p,v ) 1 — y2e2ikr’

1 3
Fi(1, = 31
21(72+p72 ( )
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Fig. 5. Effective one body model describing two identical
many-body scatterers (Hamiltonian (33)) coupled by L. sites
where the electrons do not interact.

one obtains for the behavior of (c;; 41Cp) far from the scat-
terer a simpler expression:

1
+ .
<cp+1cp> - {smkp +

where H} (p) is an oscillatory function given by

Hy (p) } (32)

2p+1

Hi.(p) =
(v? = 1) [~v?sin(kp(2p — 1)) + sin(kp (2p + 1))]
1+ v* — 202 cos(2kr)

Outside the region where the electrons interact, (c;: 411Cp)
exhibits oscillations of periodicity 7/kr which have a slow
power law decay towards an asymptotic value sin kg /7.
Those oscillations are illustrated in Figure 4 for kg = /2
and two values of U.

3 Transmission through two many-body
scatterers coupled via conduction electrons

We now consider an infinite tight binding chain with the
same kinetic Hamiltonian than defined in equation (4),
but with an interaction Hamiltonian:

Hine = U(”%J,»Q - VH—)(”%JA - Vv2+)
+UMn_re = Voy)(n_ ey = Vig). (33)

This Hamiltonian describes two nano-systems where the
electrons interact, as previously studied, which are cou-
pled via an ideal lead of L. sites where the electrons do
not interact. Two positive background potentials V7 and
Vot are introduced to compensate the Hartree terms of
the HF equation. The total Hamiltonian is symmetric un-
der the reflection p — 1/2 — —p + 1/2. At half-filling,
one has particle-hole symmetry, V14 = Vo1 = 1/2 and
the density n, = 1/2 is uniform. As before, the exchange
leads to a modified effective hopping term v in the HF-
approximation. Because of reflection symmetry, this mod-
ification must be the same for the two scatterers. The cor-
responding one-body model is sketched in Figure 5. How-
ever, when there are two scatterers in series, the value of
v characterizing each scatterer becomes different from the
value of v obtained in the previous section when there is a
single scatterer. This is due to the indirect exchange inter-
action which takes place between two scatterers coupled
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via conduction electrons. This indirect exchange interac-
tion gives rise to an effect upon the quantum conductance
of two nano-systems in series, which vanishes only if the
length L. of the coupling wire becomes infinite. We first
study this effect in the limit when U — 0, before solving
exactly the Hartree-Fock equation. We give only the re-
sults for L. even. The extension to the case where L. is
odd is straightforward. Moreover, for kp = 7/2 and odd
values of L., the conductance of the two scatterers in se-
ries g;/Q = 1, independently of v. Because of this, we just
need v for the even value of L., at half-filling.

3.1 Expansion in the weak interaction limit

For writing the self-consistent equation giving the effec-
tive hopping term v of one scatterer in series with an-
other, we need to calculate the ground state expectation
value of <CTL_2c+gc%+1(U’ v))2 inside one scatterer when an-
other identical scatterer is located at the sites —% -1
and —%. This value depends on the two modified hop-
ping terms which characterize each scatterer, and which
are equal because of reflection symmetry. In the limit of a
weak interaction strength U, v — 17 (v > 1) and one can
expand:

T _ [t
<c%+2c%+1(v,v)>2 = <c%+20%+1(1,1)>2

+(vl){%Cg(Lc,v)} +O((v71)2)

v—1+
(34)
where

N T
Ca(Le,v) = <c%+20%+1(1,v)>2 + <c%+20%+1(v, 1)>2.

We note that the above expansion involves only terms with
a single scatterer, for which one can write

<CTLTC+2C%+1(17 1)>2 = <CICO(1)>
<CT%C+2C%+1(7’7 1)>2 = <0100(U)>

<CL+QC%+1(L U)>2 = <CTLC+3CLC+2(U)>-

Using equations (23) and (28), one gets when v — 1
(v>1)

(35)

0 1 sink
O
QX(kF;p7 1)

m(2p+1)

é% <C;r>+1cp(”)> -

the function X (kg,p,v) being defined in equation (29).

In the weak interaction limit, the effective hopping
term v characterizing each of the two scatterers in series
is given by the self-consistent equation:

1 0
1—v= U{— + (v — 1)%02@5,1))}

™

: (36)

(37)

v—1+
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where Cy(Le, v) = (cleo(v)) + (CTLC+3CLC+2(U)>. One even-
tually obtains:
r(2-U) 2X(kp,Lc+2,1) !
~ 1 — k
Y +{ 2U 2L, 15 omEy
(38)

when U — 0. One can see that the indirect exchange inter-
action gives rise to a correction which decays with a power
law as the length L. of the coupling wire increases. This
is when L. — oo that the scatterers become decoupled,
and characterized by a value for the effective hopping term
which coincides with the value given by equation (24) for
a single scatterer in the limit U — O:

2
2sinkp — 7w+ 27 /U’

v(Le =00,U — 0) = 1+ (39)

Equation (38) can be written in a simpler form for a half-
filled chain. Expressing X (kp, L. + 2, 1) for kp = /2 one
obtains for the effective hopping term the equation (3)
given in the introduction.

3.2 Exact solution of the Hartree-Fock equation
Let us solve now the HF-equation for v without assuming
that v — 17. The effective one-body model described in

Figure 5 has even and odd standing-wave solutions 1/),2 (p)
and 1 (p), which can be written inside the conduction

band as:
1) = 7o (i (- 5) =509
L(p) \/%Sin ("3 <p - %) - 5l(k)) ’

p<—Le—1)and

2
(i) )

at the left side of the two scatterers (

2 1
o) =y 7 eos (K (p-5) +
L 2
(41)
2 1
ok = Zsin (1 (- 5) +010).
at the right side of the two scatterers (p +2). Between

Le
2
e even and odd

>
the two scatterers (—7 <p< L2° +1), th
) read

standing-wave solutions 19 (p) and ¥; (p
Vi (p) \/%ao cos (k ( - %))
wi(p) :\/%al sin (k (p — %)) .

The expressions for the factors ag and a; are given in
Appendix.

When v # 1, the scattering gives rise to two phase
shifts do(k) and d1(k), which are given by

(v2 — 1) (cos(k(L. + 2)) + cosk)
(v2 —1)sin(k(Le +2)) + (v2 + 1) sink

tando(k) = (43)
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and

(1 —v?) (—cos(k(Lc +2)) + cos k)
0 (k) = Ty k(e +2)) — (2 Dok

respectively.

In addition, a value of v > 1 can give rise to four bound
states located around the scatterers with energies outside
the conduction band. We just write those below the con-
duction band (Eps < —2). There is an even bound state
of energy Fys9p = —2cosh Ky, K( being the real solution
of the equation:

v + vt exp(Ko(Le +1)) =1+ exp(Ko(Le +3)).  (45)
Its wave function reads
Yoso(p) = Ao exp (Ko <p + LC; 1>) (46)
at the left side of the two scatterers (p < —% - 1),
Ubso(p) = Ag exp (Ko <p - LC; 3) (47)

at the right side of the two scatterers (p > L= 4 2), and

Ypso(p) = Aobg cosh (KO (p —

between the two scatterers (—Z= < p < Ze 4 1). The
expression for the factor by is given in Appendix.
If L. is large enough, the equation:
v —v?exp (K1 (Le +1)) =1 —exp (K1(Le. +3))  (49)

has a real solution for K. In this case, there is also an odd
bound state below the conduction band of energy Fjs1 =
—2 cosh K. Its wave function is given by

LC;1)> (50)

at the left side of the two scatterers (p < —Ze — 1)

Pps1(p) = —Aq exp (Kl <p +

L.+3
PYps1(p) = A1 exp (_Kl (p i ) (51)
at the right side of the two scatterers (p > % +2), and
. 1
Ybs1(p) = A1by sinh (K1 ( - 5)) (52)

between the two scatterers (—Z= < p < Ze 4 1). The
expression for the factor by is given in Appendix.
The condition

Z [¥bs01(p)|* =1

p=—00
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Fig. 6. T'wo scatterers in series: value v of the effective hopping
term as a function of U. v characterizes each of the scatterers
for L = 4 and kr = 7/2. The solid line gives the exact HF
value obtained from equation (54) and the dashed line gives
the approximated value (Eq. (38)).
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Fig. 7. Two scatterers in series: v as a function of even values
of L. for U = 0.1 and kr = 7/2. The circles give the exact HF
value obtained from equation (54) and the dashed line gives
the approximated value (Eq. (38)). The even-odd oscillations
characteristic of kr = /2 are not shown, v for odd L. being
not plotted.

gives the normalization factors Ay ;. The obtained expres-
sions are somewhat involved and given in Appendix.
Using equation (22), one can calculate

<c:7+1cp>2 /OkF dk {gw? (p+ 1)1/’2(17)}

+> Ui+ Dins(p)  (54)
bs

_L
o

for p = % + 1 to obtain the HF equation giving v for
two scatterers in series. The above integrals have been
calculated using Mathematica.

We compare in Figures 6 and 7 the exact HF value of
v obtained with formula (54) to the approximated value
given by formula (38) in the limit v — 1*. One can see
that the approximated value is accurate enough for the
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Fig. 8. Two scatterers in series: Friedel oscillations of the den-
sity np = (chcp) for U = 0.4, Lc = 100 and kp = 7/32.
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Fig. 9. Two scatterers in series: total conductance gi¥ (L., U)
as a function of L. for U = 0.4 and kr = 7/32. Only the values
given by the exact solution of the Hartree-Fock equation where
L. is even are plotted.

values of U where one can trust the HF approximation.
Figure 7 shows the effect of indirect exchange interaction
upon the value v of the effective hopping, and how this
effect disappears when L. — oo, for even L. only.

3.3 Density oscillations and quantum conductance
for two many-body scatterers in series

Once the self-consistent value for v is obtained, one can
calculate the Friedel oscillations of the density n, = <c;cp>
around the two scatterers. Outside half-filling, our model
exhibits Friedel oscillations of the density which are illus-
trated in Figure 8 for U = 0.4, L. = 100 and kr = 7/32.
The transmission coefficient t** of a single scatterer as
a function of v and kg is given by equation (25). r]fF de-
noting its reflection coefficient, the transfer matrices MlkF
and M]gf through a single scatterer and the coupling lead

read:
. ( (L) ol e
(

LN o
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Fig. 10. Two scatterers in series: minimum values of

g§F (Le,U) for the successive conductance oscillations occur-
ring when U = 0.4 and kr = 7/16, underlining the power law
decay of their amplitudes as a function of L.. The dashed line
is a numerical fit 0.91324 — 0.05267/L..

and

k eikFLc 0
MLS = ( 0 e ikrLe |- (56)
From the matrix Mj* = M* M’ZSM{“F, and current con-
servation (1 = [t¥|2 4 |r¥|2)  one obtains the transmis-
sion coefficient t5" and the dimensionless conductance gi*
of two scatterers in series, coupled by L. sites where the
electrons do not interact:

2iv2e2*F gin? kg

k _
B0 = = )
44 (57)
ng(’u) :41) sin® kp
’ e (v))*

where

dFF (v) = e ihE sinkp(L: + 3)] — 202 sinfkp(Le + 2)]
+ v*e™* sinfkp (L. + 1)].

The presence of L. dependent corrections to v shows that
the transmission coefficient ¢¥* of one scatterer depends
on the distance L. from the other scatterer. Accordingly,
this non-local effect affects the conductance gi* of two
scatterers in series. We show in Figure 9 the total con-
ductance glgF of two scatterers in series for a low filling
factor (kp = m/32), obtained by the exact solution of
the Hartree-Fock equation. One can see the large period
w/kp = 32 of the conductance oscillations, though the
values for odd L. are not plotted. The conductance oscil-
lations are larger when L. is small, due to the effect of
the exchange energy. The 1/L.-decay of the conductance
oscillations towards its asymptotic L.-independent value
is underlined in Figure 10 obtained with kp = 7/16.

4 Comparison with exact DMRG results

Exact values of the conductance of a one dimensional scat-
terer in which electrons interact can be obtained using
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the embedding method and the DMRG algorithm, as ex-
plained in previous works [8-11]. We have compared in
Figure 5 the HF results and the exact DMRG results for
a single very short scatterer. The difference was negligible
for small values of U. Nevertheless, the HF values differ
[7] more and more from the exact values when the size
of the scatterer in which the electrons interact increases.
The difference should become more pronounced for two
scatterers in series. We study the ability of the HF ap-
proximation to describe two interacting nano-systems in
series for a half filled chain (kp = 7/2).

If the scattering matrix of one scatterer is not modified
by the presence of other scatterer as for non-interacting

systems, the conductance g; /2 of two scatterers in series
for kp = /2 shows even-odd oscillation as a function of

the size L. of the coupling wire: g;/Q =1 when L. is odd,
and is given by [8]

/2 2
5" = <7g1 )
g* -2

when L. is even. Here gf/ ? is the conductance of a chain
with a single scatterer. In the presence of electron-electron
interaction, however, the scattering matrix of one scatterer
can be affected by the other scatterer as shown in the
previous subsection.

(58)

/% and g3/? were

obtained separately, using the embedding method: gf/ 2

being calculated for an infinite chain embedding a single

In reference [8], the exact values of g7

scatterer, gg /2 for an infinite chain embedding two scatter-

ers. It was found that g;/Q = 1if L. is odd, as predicted.

But if L. is even, g§/2 was related to gf/2 by formula (58)

only in the limit L. — oo. For small sizes L., formula (58),

/

with g7 2 obtained for a single scatterer surrounded by in-

finite leads without other scatterers, overestimates g5 /2 by

an amount
L.
characterized by a function A(U, kg) given in Figure 11
for kp = /2.

Using the HF approximation, we have shown that
the parameter v characterizing a single scatterer becomes
modified if another scatterer is put in series. Hence, the

395 (Le) = (59)

2 . . .
conductance gf/ of one scatterer in series with another
differs from its value when it is alone. If one ignores this

difference, as previously using the DMRG algorithm, tak-

/2 its value without the second scatterer and

ing for g
using formula (58), one overestimates also g, /2 by an
amount which is described by formula (59), but with a
different function A(U,kr) given in Figure 11. One can
see that the HF approximation reproduces qualitatively

the DMRG results, giving a function A(U, kr) character-

izing the correction dgy / 2(Lc) which first increases be-
fore decreasing as U varies. When U is small enough, the
HF approximation reproduces quantitatively the DMRG
results: Agp(U, kr) ~ Apmrc (U, kr). When U becomes
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Fig. 11. Function A(U, kr) characterizing the interaction in-
duced correction 8gh¥ (L.) to gb¥ of (58) for two interacting
nano-systems in series (formula (59)) at kr = 7/2. The exact
values obtained from the embedding method and the DMRG
algorithm are shown by circles, the values obtained from the
HF approximation by a solid line.

larger, the decay of Apmgra (U, kr) is not quantitatively
reproduced by the HF approximation. A more suitable de-
scription could be obtained using a perturbative approach
adapted to the limit U >> t5,, as used in reference [23]. For
intermediate U, there is no simple analytical approach,
making the use of numerical renormalization methods
(NRG [22,24] or DMRG) necessary.

5 Temperature dependent scale Ly
of the indirect exchange interactions

We have shown that the indirect exchange interaction be-
tween two scatterers gives rise to corrections to the value
of the quantum conductance ggF which slowly decays as L.
increases at zero temperature. We are going to show that
this effect is suppressed when the length of the wire cou-
pling the two scatterers exceeds Ly, which is the scale on
which an electron propagates at the Fermi velocity dur-
ing a time h/kpT, i.e. the thermal length characteristic
of free fermions in one dimension. Since our approach is
essentially valid in the limit of weak values of U, it is suf-
ficient to consider the weak interaction limit discussed in
Section 3.1 for a temperature 7' = 0. In this limit, the
effect was given by the deviation of (c;; 41Cp) from its uni-
form value sinkp/7, deviation induced inside the leads
by an embedded scatterer. To show that this deviation is
exponentially suppressed above Ly is enough for proving
that the effect of the indirect exchange interaction upon
géF vanishes when L. > L.

At finite temperature kgT = B!, the Fermi-Dirac
function f(E, ur) gives the occupation number of the level
of energy FE at a Fermi chemical potential yp:

1

fo(E, pr) = BE—) 71 (60)
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Fig. 12. v given by equation (62) as a function of the temper-
ature T = 3! for different values of U and ur = 0.

When one has a single scatterer embedded in an infinite
perfect lead, the temperature modifies [20] the value of

(cl¢o) inside the scatterer. Instead of having equation (23),
one now has:

where the contribution of the conduction band reads:

/ dk f5 (B i5) {Zw }

T dk 4v cos ksin® k
- LrE
/0 wfﬁ( k’NF){1+v42v2cos(2k)}

the contribution of the two bound states becoming

(cleo)s = (61)

AL(B, ur) =

Atl)so [LF Zfﬁ EbsMLF)l/}bb( )l/fbs( )
1—v2

:{fﬁ(EbslnuF) - 5

f5(Evs2, pr)}

The effective hopping term v is given by the implicit equa-
tion:
v=1+Ulclco(v))g, (62)

and becomes dependent on the temperature 7" and on ur.
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Fig. 13. ‘<c;+1cp> — A‘ as a function of p for U = 0.5 and

pur = 0 (half-filling). A is the asymptotic value when p — oo.

Assuming a half-filled chain (up = 0 due to particle-
hole symmetry), v given by equation (62) has been cal-
culated numerically for weak values U of the interaction
strength. The T dependence of v is shown in Figures 12.
One can see that this dependence remains weak when the
temperature kT < 0.1 and U is small.

Equation (28) giving (c;r) 41Cp) outside the part where
the electrons interact (p > 1) becomes at a temperature 7T":

L [7 ' ,
<c;+1c,,>ﬁ = %/O dk f3(Ey., pr) {; Y (p + 1>w;2(p)}
+ Z fﬁ(Ebsa NF)wbs (p + 1) wbs (p)

bs
_ 1 / dk f5(Ey, ) {cos k — Gk, v)}
0

™

+{fﬁ(Ebsl7MF)

-1 _,
7fﬁ(Ebs2;,u'F)} 2 v 2p 17

(63)

the function G(k,v) being defined in equation (27).

By using numerical integration, we have calculated
(c;; +lcp> g as a function of p for different temperatures T’
and pp = 0. The data show that (c; 41Cp)p exhibits oscil-
lations which have a faster decay when the temperature
increases. If A is the asymptotic value of (c;; +1Cp)p When
p — oo, we show in Figure 13 how the absolute value
of the difference between (c;; 1+1¢p)p and A decays when p
increases for different values of 7. One can see that the
decay towards its asymptotic value of (c;r) 41Cp)p becomes

exponential:
T > p
<cp 1%p 5 A‘ X exp ( Ir

when p is large.
In Figure 14 the decay length L7 is shown as a function
of T. One can see that Ly decays when the temperature

(64)
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Fig. 14. Thermal length Lt as a function of the temperature
T obtained from the exponential decays of (c:7 41Cp) shown in
Figure 13. The points obtained using two values of U = (0.5
and 1) and T form a single solid curve Ly = 1/(wkgT).

0.10

increases as:

1
N 7Tk'BT'

Ly (65)
Since we have taken ¢, = 1 and the lattice spacing s =
1 in our calculations, one can identify this decay length
with the length on which a free fermion of speed vp =
h='0Er/0ky = 2/h propagates during a time h/(kgT)
in one dimension. Ignoring a multiplicative factor 1/(27),
L7 is the usual thermal length of free fermions in one
dimension.

6 Conclusion

Extending the Landauer formulation of quantum trans-
port to nano-systems inside which electrons interact, we
have studied a one dimensional spinless model which is
simple enough to be analytically solved assuming the
Hartree-Fock approximation. We have shown that the
scattering becomes non local when the many-body ef-
fects inside the scatterer are taken into account. Using
two identical nano-systems in which interaction gives rise
to scattering and which are coupled by a non-interacting
lead of length L., the Hartree-Fock approximation have al-
lowed us to map the many-body scatterers onto effective
one-body scatterers which depend on the other scatterer
through the indirect exchange interaction via the conduc-
tion electrons of the coupling lead. The non local character
of the scattering is only due to exchange terms in the stud-
ied model, a positive background charge compensating the
Hartree contribution. We have shown that the HF theory
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provides a qualitative understanding of the non local ef-
fects found in reference [8], quantitatively reproducing the
exact behaviors in the weak interaction limit.

Eventually, we point out that we have restricted our
HF study to a purely one dimensional limit where power-
ful renormalization methods (DMRG, NRG) are available.
Though it has allowed us to compare the HF results to ex-
act numerical results, this is the worst limit for using the
HF approximation. To extend the HF study to the many
channel case, where the electron dynamics will be more
two or three dimensional does not present particular dif-
ficulties [7]. Moreover, the HF approximation is believed
to become more accurate outside one dimension. A HF
study of this many channel limit is in progress and will be
published in another work.

We believe that the interaction induced enhancement
of the sensitivity of the quantum conductance to the na-
ture of the attached leads can be relatively easily observed.
A more detailed study of a possible experiment will be dis-
cussed in a separate work.

One of the authors (Y.A.) is grateful to Research Fellowships
of the Japan Society for the Promotion of Science for Young
Scientists.

Appendix

For two scatterers in series, one uses even and odd stand-
ing wave functions. The factors ag and a; for the even and
odd functions of energy inside the conduction band read:

_ v|sink|

ag = \/ao )

ag = {(UQ — 1) cos (g(Lc + 1)) }2

+sink {v*sink + (v* — 1) sin(k(Lc + 2))},
_ v|sink|

" e

ay = {(v2 — 1)sin (S(LC + 1)) }2

+sink {v*sink — (v* — 1) sin(k(Lc + 2))}.

The factors by and b; for the even and odd functions of
energy outside the conduction band read:

v

bO = )
efo0/2 cosh 7K0(L2“+3)

b v
1= .
eK1/2 ginh 71(1(]:264_3)

Using the auxiliary functions Ay (L., K)

sinh(k(L. + 2))

Ay (Lo, K) =2+ L. % : )
+( ) * sinh K
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the normalization factors Ay and A; for the even and odd
bound states of energy below the conduction band read:
—-1/2
A 2A, (L, K,
1%2/2: 2 1 2coth Ko 1 —A 0)2
V/2eifo (cosh 7K0(L26+3)>

—1/2
A 2A_(Le, K
A stk - Ao 1)2
V2eiK1/2 (sinh Kl(L2c+3>)
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